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Solution of the excluded volume problem for biaxial particles 

by B. M. MULDERt 
Institute for Theoretical Physics, Princetonplein 5, P.O. Box 80.006, 

3508 TA Utrecht, The Netherlands 

(Received 14 April 1986; accepted 20 May 1986) 

We report the solution of the excluded volume problem for a pair of biaxial 
hard molecules; namely, sphero-platelets. As an application of this result we study 
the isotropic to nematic liquid crystal transition for a fluid composed of these 
particles in the Onsager limit (length % breadth or width). We show that the range 
of stability of the isotropic phase decreases with increasing particle biaxiality. 

1. Introduction 
Hard particle fluids play a major role as models and reference systems for a wide 

variety of systems, varying from simple monatomic liquids to colloidal suspensions of 
molecular aggregates. At present, however, only the hard sphere fluid can be regarded 
as being adequately understood on a theoretical level [ 11. Non-spherical hard particle 
systems studied so far were either formed by assemblies of fused hard spheres or 
convex shapes with one axis of rotational symmetry. The latter type of model has been 
extensively applied in the field of liquid crystal research [2]. This application was 
pioneered by Onsager [3], who was able to show how excluded volume effects can 
account for the transition to an orientationally ordered fluid phase in a system for 
very elongated hard rods. A crucial ingredient of this theory, as well as of most of its 
successors, is the determination of the pair excluded volume of the particles involved. 
Explicit analytical results for this quantity have been obtained so far for circular 
cylinders, sphero-cylinders [3] and ellipsoids of revolution [4]. As real molecules are 
in general not uniaxially symmetric, it is natural to inquire about the role of particle 
biaxiality in this type of model. This problem has already received some attention, but 
was studied either through effective potential approximations [5-81 or models with 
restricted particle orientations [9, lo]. It is our aim to carry the understanding of the 
role of particle biaxiality in hard particle fluids one step further, by giving, to our 
knowledge, the first explicit derivation of the excluded volume of two biaxial bodies 
with arbitrary fixed relative orientation. This paper is organized as follows. In $2 we 
introduce our biaxial particle, namely the sphero-platelet, and solve the excluded 
volume problem for sphero-platelets. Section 3 discusses order parameters and expan- 
sions of orientational distribution functions relevant to this system. As an application 
of our result the isotropic-nematic transition of the sphero-platelet fluid is studied in 
the Onsager limit in $4, resulting in a prediction for the upper-bound in the density 
of the transition as a function of particle biaxiality. Some conclusions and ideas for 
further research are presented in $5. 

Present address: Van? Hoff Laboratorium voor Fysische en Colloidchemie, Padualaan 8, 
3584 CH Utrecht, The Netherlands. 
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540 B. M. Mulder 

2. Sphero-platelets and their excluded volume 
The biaxial convex body we introduce is a direct generalization of the well-known 

sphero-cylinder, if we interpret this shape in a novel way. Instead of looking at it as 
a cylinder of length L and radius a capped with two hemispheres of the same radius, 
we can consider it to be the set bounded by those points, whose smallest distance to 
a straight line piece of length L is equal to a. More precisely (the concepts from the 
theory of convex bodies employed here can be found in [I I]) the sphero-cylinder is a 
parallel body of a line piece. Using the definition of Minkowski addition we can 
denote it as 

SC = 9 @ B a  = { X ~ X  = 1 + b , l E 9 , b E g a } ,  (2.1) 

where 9 is a line piece of length L and ga a sphere of radius a. The biaxial 
sphero-platelet immediately follows if we take a rectangular platelet as basis instead 
of a line piece, as illustrated in figure 1. Formally we have 

SP = w 0 ?aa, (2.2) 

where 9 is a rectangular platelet of length c and breadth 6,  where, as in the following 
we assume c >, b >, a. We recover the familiar cases of a sphero-cylinder and a 
sphere by setting b or b and c to zero respectively. 

I 4  

I-b-I 

Figure 1. The sphero-platelet obtained by Minkowski adding a platelet and a sphere. 

The quantity we are interested in is the excluded volume of two sphero-platelets 
with fixed orientations. The excluded volume E(A, B )  of two sphero-platelets, A and 
B, can be expressed as the volume of the Minkowsi sum of the two bodies 

E ( A , B )  = 0 BI = V W ,  0 gal 0 (W, 0 ga>l, 

= ww.4 0 9,) 0 (2.3) 
Here V is the volume-functional, and commutativity and associativity of Minkowski 
addition were applied. From equation (2.3) we see that we have to determine the 
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Excluded volume for biaxial particles 54 1 

volume of the parallel-body of radius 2a of the convex polyhedron BAB = BA 0 9,. 
The volume of the parallel body of radius e of a polyhedron B is given by the Steiner 
formula 

where S is the surface-area functional and M the edge-curvature defined as 

1 
M [ B ]  = - c SjOj, (2.5) 

edges 

where sj is the length of the edge j and Oj the angle between the normals of the faces 
meeting at edge j .  

I 
I I 

Figure 2. The polyhedron YAB; the excluded volume of two identical rectangular platelets. 

We describe the sphero-platelets by orthonormal frames ( r i j > j = l , 2 , 3  and (6j) j=1,2,3 
with the 1 direction normal to the basis platelet. Figure 2 shows the polyhedron P A B  

for a typical pair of orientations. Note that PAS is generated by sweeping out space 
as platelet B moves with its centre over all points of platelet A.  The frames of A and 
B are linked by a Cartesian rotation 

6, = n,rij. (2.6) 
We start by determining the volume F7BAg]. This will be done in two stages. 
(i) Determine the volume of the parallepiped 93 that is generated as W E  is transported 
over a distance b in the 6, direction. (ii) Determine v[@AB] as the volume swept out 
by & as it is transported over a distance c in the ri, direction. When a solid body S 
is transported over a distance d i n  the direction ri, the volume swept out is given by 

P = dA(S,ri) + V [ S ] ,  (2.7) 
where US] is the volume of S and A (S, n) the area of the projection of S on a plane 
perpendicular to ri (cf. figure 3). We find 

V[&] = b A ( 9 ~ , 4 > ,  
= b I Proj (bG2; r i2)  A Proj(c&,, ( i 2 )  I, (2 .8)  
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542 B. M. Mulder 

0 

Figure 3. A two-dimensional illustration of the dependence of the volume swept out by a 
translation of a solid body S in a direction t i ,  on the volume of the body, the distance 
of translation and the projection of the body on a plane normal to t i .  

I-b-I 

Figure 4. Construction of the projected area A(&?, d3) ,  showing that it is equal to the area of 
the projection of B on the (a,, d,) plane plus the area of the rectangle formed by the 
diameter of this projection and the translation over a distance b along 6,. 

where Proj (v, A) denotes the projection of the vector v on the plane with normal ?t, 

and A is the vector exterior product. Using equation (2.6) this works out as 

V[&I = b2cIQ23Q3, - Q,,Q,,I, 

= b2clQ,,l. (2.9) 

V[PAB] = cA(&Ji3) + v[&]. (2.10) 

The second step consists of another application of equation (2.7) 

The computation of A(&, ci3) is illustrated in figure 4; 

~ ( & , c i ~ )  = IProj(h& ci3) A Proj(cl;,, ci3)/ + b{lb&-ciil + 1c6,-ci,l) 
= bctIQ13I i- I Q 3 i I I  -t h21%iI. (2.1 1) 

V[P',*l = bZc{la21 + l Q 2 l l )  + bc2{IQ,31 + Ifl,lI>. (2.12) 

Thus 

The surface area of PAB is the sum of the areas of the twelve faces, that are pairwise 
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Exchded volume for biaxial particles 543 

the same (cf. figure 2). We have 

S[pA,] = 2bcl62 A 631 + 2b2162 h 621 + 2bC(62 h 631 

+2bc16, A b3/ + 2bcl6, A 6,l + 2c2)ci3 A g31 

+2b~{Q:, + Q:2}’/’ + 2c2{Q:, + 5 2 3 2 )  2 

= 4bc + 2b2{Q:, + Q ~ 3 } ” 2  + 2bc{Q:, + Q:3}112 

(2.13) I/2 . 

The edge curvature of pAB is easily read off from inspection of figure 2, 

h f [ p A B ]  = 2nb + 2ZC. (2.14) 

Combining these results with equation (2.4) yields the explicit form of the excluded 
volume 

E ( A , B )  = - 32m3 + 8m2b + 8na2c + 8abc + 4abc{R:, + Q22} 2 112 

3 

+4abc{Q:, + Q:3}1/2 + 4ab2(R:, + 
+ b 2 C O Q 2 , l  + I Q l 2 I )  + bC2{1fi311 + IQ,,l>. 

+ 4ac2{~: ,  + Q:,}’/~ 

(2.15) 

Inserting the expressions for the rotation matrix elements in terms of the standard 
Euler angles (a, B, y) our final result becomes 

32na3 
E ( A , B )  = - + 8na2b + 8na2c + 8abc + 4abc{(cos2asin2B + C O S ’ ~ ) ’ ~ ~  

3 

+(cos2ysin2p + C O S ~ / ? ) ’ / ~ }  + 4ab2{(sin20!sin2Bsin2y + cos’asin’y 

+ sin’ clcos2y + 2 sin clcos clcos B sin ycos y) ’ / ’ )  + 4ac21sin fi  1 
+b2c{(cosclsiny + sinctcosBcosy1 + Isinclcosy + cosacosBsinyI} 

+ bc2 { lcos cl sin /?I + lcos y sin P I } .  (2.16) 

As a check on this formula we compute its average over all relative orientations. The 
integrals involved are of two types 

and (2.17) 

We obtain 

32na3 EA,, = - + 8na2b + 8na2c + 8abc + 2nabc + nab2 + b2c + bc2. (2.18) 
3 

Using an elegant integral geometrical formula, the orientation averaged excluded 
volume can be expressed purely in quantities related to a single sphero-platelet 

EA,, = 2V[A] + 2 M [ A ] S [ A ] .  (2.19) 

Here V [ A ]  is the volume, M [ A ]  the surface averaged mean curvature and S [ A ]  the 
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544 B. M. Mulder 

surface area. The volume and surface area are 

471 
3 

VIA] = - a3 + na2b + na2c + 2abc, 

S [A]  = 4712 + 2nab + 2nac + 2bc. 

The surface averaged mean curvature is defined as 

(2.20) 

(2.21) 

where R ,  , R2 are the principal radii of curvature, and dSA an element of surface area. 
For the sphero-platelet only the spherical and cylindrical parts contribute, 

2a 
+ (2nab + ~ X U C )  - 4n 

= u + 4b + ac. (2.22) 

Inserting these results in equation (2.19) leads to identity with equation (2.18). 

3. Order parameters and distribution functions 
In this section we address the definition of order parameters and orientational 

distribution functions relevant to fluids composed of biaxial particles. This problem 
has been discussed by several authors [5,6,8], mainly concerned with a correct 
description of biaxial liquid-crystalline phases. Straley was the first to argue, in 
reference to a specific model he constructed, that a set of four order parameters would 
be necessary and sufficient [6]. We rederive this observation here, showing how it 
relates to assumptions about the symmetries of the molecules as well as the sym- 
metries of the phases we wish to describe. Consider particles possessing (like the 
sphero-platelet) three mutually orthogonal planes of mirror symmetry. The orienta- 
tion of such a particle with respect to a fixed reference frame can be specified by giving 
two unit vectors, li and 6, chosen orthogonal to two of the mirror planes (cf. figure 5). 
These unit vectors can be used to build two tensorial second rank order parameters 

and 

i 

1 u = ( a  0 a). 
v = ( $ t o ) ,  

Figure 5. A biaxial particle with three orthogonal mirror planes and the molecular frame 
{ti, 6, LJ} associated with it. 
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Excluded volume for biaxial particles 545 

where 0 denotes the direct product and the brackets signify equilibrium averaging. 
U and V are symmetric and have trace unity (Tr (U) = ti - ti = l), so in principle 
contain five independent elements each. Due to the orthogonality of ti and 5,  one extra 
relation exists, leaving nine independent elements in all. Focusing on spatially homo- 
geneous but possibly anisotropic phases, we now inquire into the conditions necessary 
to be able to diagonalize simultaneously U and V. Introducing an orientational 
distribution function $(Q) describing the phase and a measure on the orientations dQ, 
we write the averages in equation (3.1) as integrals, for example 

U = sdQ$(Q)t i (Q)  0 ti(Q). (3.2) 

Forming the commutator of U and V we find 

W? VI,, = &,,I dQ 5 dQ' 4m 4W"W) * W')) (C(Q) A 5(Q'>),, (3.3) 

where summation over 1 is implied. Considering the invariance of the measure under 
reflections, and the axial nature of the exterior product, we find that W, v] will vanish 
if the distribution described by $(Q) has three mutually orthogonal mirror symmetry 
planes. In that case the simultaneous diagonalization can be carried through and we 
are left with four independent matrix elements. The relatively natural assumption that 
a spatially homogeneous phase will have a symmetry higher or equal to that of the 
constituent particles, is the basis of this result. We now turn to the question of which 
order parameters to use in practice. To this end we define a set of functions to serve 
as a basis for the expansion of the orientational distribution function, consistent with 
these conditions on the phase and particle symmetry. We start with an expansion of 
the distribution function in terms of the standard rotation matrix elements (through- 
out we employ the conventions of [12]) 

$(a> = C aTnQL,n(Q), (3.4) 

where the summation runs over L and m, n in their appropriate ranges. The assump- 
tion that both phase and particles possess three mutually orthogonal mirror planes 
leads to the following facts: 

(i) only terms with L, m and n even contribute; 

(ii) the expansion coefficients satisfy the identities, 

a?" = = cmsn = a,". -. 
We therefore introduce the functions 

Qk,,(fl) = (3J2)""m'0+6n~0{9~,n(Q) + 9;,-.(Q) + @m,n(Q) + @,,,, -,,(Q)), 

m,n 2 0 (3.5) 

IC/(fi) = 1 q?"Qk,n(Q), (3.6) 

and expand 

where L takes on only even values and m and n even, non-negative values. The QL,n's 
are real functions satisfying the orthogonality conditions 

(3.7) 
87T2 

dQ Qk,n(Q> Q$,n,(Q)  = 8 L , c 8 m , m ' d n , n ' .  s 
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546 B. M. Mulder 

They also form a closed set under composition of rotations in the sense that 

(3.8) 
8n2 5 dQ’ Qi,,(QQ’) Q;:,n.(Q’) = ~ 2L + , d L , r b E , n , Q k , A Q ) .  

Specializing to the case L = 2, we find the following set of four functions 

(3.9) 1 Q;,o(Q) = $(3Cos2fl - I), 
Qi,o(t2) = + J3sin2flcos2a, 

Q;,,(R) = + J3sin2flcos2y, 

Q;,,(Q) = +( 1 + cosz/?) cos 2a cos 2y - cos B sin 2a sin 2y. 

These are, apart from some normalization constants, the functions employed by 
Straley. The associated order parameters are 

(3.10) 

All four parameters are identically zero in an isotropic phase. If the phase has 
azimuthal symmetry around the preferred z axis, the parameters 4:’’ and q$2 
vanish, showing that they signal the appearance of a biaxial phase. 420.’ and 920.’ 
describe uniaxial phases, the first being equal to the Maier-Saupe order parameter 
s = (P2(cosfl)). 

4. Onsager theory 
Since no truly satisfactory theory for the equation of state of hard particle fluids 

at finite packing fractions exists at present [13] we shall look at a limiting case where 
the information on the excluded volume of the sphero-platelets we have obtained can 
be put to full advantage. We pass to the so-called Onsager limit where we let the length 
c of the particles tend to infinity, while the average excluded volume, and hence the 
second virial coefficient B,, are kept finite. In this limit Onsager was able to show that 
the third virial coefficient B, vanishes as 

B: = ($)log@), 

where k is a constant [3]. Higher order virial coefficients are expected to decrease even 
more rapidly as function of c, an effect that has been observed in numerical calcu- 
lations of these quantities [14]. If we now make a density expansion of the free energy 
functional [15], we need to take into account only terms linear in the density 

BY[$] = 1 dQ$(Q)log $(Q) + @&[$I + A</?, el, (4.11 

whereris the free-energy per particle, f l  is the inverse temperature,A does not depend 
on the orientational distribution function, and &[$I is the second virial coefficient 
defined as 

&[$I = dQ dQ’I@)$(Q’)E(:(n,Q’). ‘ i  s (4.2) 

,!? is the excluded volume of two sphero-platelets with fixed orientations in the 
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Excluded volume for biaxial particles 547 

Onsager limit, hence 

B(n,n’) = E(n/-’n) = J?(Q,), 

= &{sinB + AsinB(lcosa1 + Icosyl)}, (4.3) 
where we have introduced the finite quantities E = 4ac2, A = a(b/a) and the relative 
orientation OR = Q’-’n = (a, B, y). This is easily obtained from equation (2.16) and 
our definition of the Onsager limit. A necessary requirement for equilibrium is that 
the free energy be stationary under variations of the orientational distribution func- 
tion. This leads to the familiar equation for the distribution function 

logII/(R) + e dO’$(Q’)B(n,Q’) = K, (4.4) I 
where Kis a constant related to the normalization of II/. We shall not attempt to obtain 
the full solution to equation (4.4) here, but concentrate on the more modest question 
of finding an upper bound on the density of the stability of the isotropic fluid phase. 
The method we employ is a bifurcation analysis of the non-linear integral equation 
(4.4), closely following Kayser and Raveche [16], who were the first to apply this 
technique to the isotropic-nematic transition of the sphero-cylinder fluid. The essence 
of the procedure is to linearize equation (4.4) around the isotropic distribution, which 
is a solution at every density, and then determine the density at which this linearized 
equation admits solutions corresponding to an ordered phase. The mathematical 
background to the technique is discussed in Krasnosel’skii [ 171. 

We first introduce a perturbation to the isotropic distribution through 

where due to the normalization of the distribution function we have 

jdQx(R) = 0. (4.6) 

Insertion into equation (4.1) and linearizing then yields 

~(n) = -7 dQ’B(n,n’)x(O’). (4.7) 8n @ !  

Since non-zero values of the four order parameters introduced in equations (3.9) and 
(3.10) are a sufficient criterion for ordering, we take the perturbation to be of the form 

x(Q) = 1 P‘Q~, , (n> .  (4.8) 

Since the excluded volume as a function of the relative orientation R, possesses the 
same symmetries we have assumed for the distribution functions, we can expand 

We refer to the Appendix for an explicit evaluation of the expansion coefficients ep”. 
Using equations (4.8) and (4.9) the linearized equation (4.7) is turned into a matrix 
eigenvalue problem, 

(4.10) 
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548 B. M. Mulder 

Although there are four components qp”, the independence of equation (4.10) on the 
first index shows that the problem factorizes into two identical 2 x 2 problems, 
involving the order parameter pairs (qFo, 420’’) and (q t0 ,  4223’) respectively. The matrix 
e;” has only two independent non-zero elements, that can be evaluated with the help 
of the Appendix 

Introducing the dimensionless density d = ee,  the bifurcation density d* is deter- 
mined by the largest positive root of 

1 
d P _ _  

V 

CL - - v2 = 0. 
d 

(4.12) 

and so 

1 _ -  d* - +p + +[pu’ + 4v’]”2. (4.13) 

1 
0 0.1 0.2 0.3 0.4 0.5 

A -  

Figure 6. Plot of &nd*, where d* is the bifurcation density, as a function of the biaxiality 
parameter A. 

In figure 6 we have plotted d* as a function of the molecular biaxiality parameter A. 
For the case A = 0 corresponding to the sphero-cylinder in the Onsager limit we see 
that 

Qnd*(A = 0) = @*&(A = 0) = 4, (4.14) 

which reproduces the result of [16]. We note that e* decreases as the biaxiality A is 
increased. This is analogous to the increase in the corresponding temperature T* in 
Straley’s model [6].  Since we are dealing with the isotropic-nematic transition, the 
information in the subspace spanned by the biaxial order parameters (q:”, 4:’) is 
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Excluded volume for biaxial particles 549 

redundant, and consistent solutions to equation (4.10) are obtained by setting them 
equal to zero. 

Experience with other models [6,8,10] has shown that at a certain particle biaxial- 
ity, marking the cross over from rod-like to plate-like behaviour, the system should 
show an isotropic-to-biaxial transition of second order, at the meeting point of the 
first order transition lines to the rod-like and plate-like uniaxial phases. An analysis 
of the direction of bifurcation as function of the biaxiality should be able to identify 
this point, where all four order parameters become non-zero simultaneously. Unfor- 
tunately this cannot be studied in the context of the present model, as the cross over 
from rods to plates occurs in a regime where the length and the breadth of the particle 
are of the same order (b  - c). This is a regime where Onsager’s results no long apply, 
and a more elaborate free energy functional would have to be constructed. 

5. Conclusions 
The explicit solution of the excluded volume problem of sphero-platelets is a 

starting point for the study of the role of particle biaxiality in hard particle fluids. The 
Onsager limit provides a well defined, albeit somewhat unrealistic, case for testing our 
ideas on these systems. Our preliminary result on the upper bound of the stability of 
the isotropic phase as a function of particle biaxiality, however, is interesting in its 
own right. Since the relative distance (e* - eT)/e*, where e* is the bifurcation density 
and @T the actual transition density, between the limits of absolute and thermodynamic 
stability of the isotropic phase is known to be quite small (- 10 per cent), we can infer 
that particle biaxiality lowers the transition density. 

As a next step we could study all the solutions to the variational equation for the 
equilibrium orientational distribution function (cf. equation (4.4)) and thus obtain 
information on the actual location of the isotropic-nematic transition as well as the 
expected biaxial phase. Unfortunately this is a somewhat dubious application, as 
Onsager’s argument on the disappearance of higher order virial coefficients is no 
longer valid for strongly ordered systems, rendering the free energy functional in 
equation (4.1) inadequate. 

The physically more interesting case of systems at finite packing fractions is 
correspondingly harder to tackle. We could, given our result for the excluded volume 
of sphero-platelets, apply either scaled particle theory [2] or the y expansion [13] to 
predict the phase diagram of such systems. Given the state of the art, however, a 
critical comparison with data obtained by direct simulation seems indispensable. 
Especially predictions regarding the presence of a biaxial liquid-crystalline phase, 
merit some caution until more definite evidence of their existence is gathered. 

We would like to thank Daan Frenkel for a critical reading of the manuscript. 
Financial support from ‘Stichting FOM’, which is funded by ‘Nederlandse Organisatie 
voor Zuiver-Wetenschappelijk Onderzoek (ZWO)’ is acknowledged. 

Appendix 
In this Appendix we evaluate the coefficients in the expansion 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



5 50 B. M. Mulder 

where ,!?(a) is the excluded volume of two sphero-platelets in the Onsager limit 

g(Q) = E[sinp + Asinp{lcosal + I c o s ~ ~ ] ] .  (A 2) 
The coefficients can be expressed in terms of integrals over rotation matrices 

7L I-'(+) A ,  = ( 2 7 ~ ) ~  - 
4 (+L + i)r2(g + I)($ - +L)rZ(t - $L) '  

Using the reflection formula for the r function this reduces to 

Turning to B," we have 

where we have introduced the reduced matrix element 

The integral I, is readily evaluated 

We introduce the following integral representation for the associated Legendre poly- 
nomial ([19,§4.6.2]; n.b. the formula given in [I81 as 8.711.2 lacks the factor i") 
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Excluded volume f o r  biaxial particles 55 1 

Since Pr is even for L,m even we have 

{(L - rn)!(L + m))Ii2 
L! 

Jr = 2i" 

I 

x Jo d< f d@[l - ~2] ' i 2cos  ma[< + (t' - 1)1i2cos @I" 

B() (L  - 2k + l), k + 3) 
22k(2k + l ) B ( f ( 2 k  + M + 2) ,$ (2k  - M + 2))' 

where B(x ,  y )  is the Euler Beta function. 
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